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Novel RED-AT Congestion Control Algorithm 
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Abstract— Congestion Control on Internet has drawn attention of many researchers since its presence from early 80’s. This lead to 

development of congestion control algorithms such as Droptail, RED and its variants, Random Exponential Marking (REM), Adaptive 

Virtual Queue (AVQ) etc. Out of these, RED has been promising and widely used in router for long. This paper proposes RED with 

Adaptive Threshold (RED-AT) algorithm which is based on the current and few past observations of average queue size to adjust 

thresholds. Thus it can correctly predict the behavior of queue dynamic and make appropriate adjustment in upper and lower thresholds. It 

is observed the proposed RED-AT scheme mitigates oscillations in average and instantaneous queue size and enhances link utilization. 

Simulation results show improvement in throughput, jitter and packet loss performance of a router. 

Index Terms— Congestion control, RTT, Adaptive RED, RED-AT, Window control,bandwidth, ACK.   

——————————      —————————— 

1 INTRODUCTION                                                                     

ongestion on internet has been under constant investiga-
tion since its presence is first detected in mid 80s. The 
sophistication of internetworking would be useless if we 

do not cater the problem of congestion. This problem is now 
becoming more and more relevant with substantial increase in 
internet traffic in last decade.  Congestion collapse [1] is that 
state that a packet switched data network can reach when little 
or no useful communication happens. Congestion usually oc-
curs at “choke points” in the networks when total incoming 
traffic to a node exceeds outgoing bandwidth capacity. Con-
gestion control deals with controlling data traffic entry into a 
communication network so as to avoid overloading of rou-
ters/gateways and hence avoids congestion collapse.  

The congestion control schemes can be classified into two 
categories: source based and gateway based. In a source based 
scheme, the presence of congestion is detected through the 
effects of congestion, e.g., packet loss, increased round trip 
time, changes in the throughput gradient etc., rather than the 
congestion itself e.g. overflowing queues. After detection of 
congestion, transport layer at sender reduces window size to 
reduce sending rate. Gateway based scheme detects incipient 
of congestion through large queue size and notifies host by 
marking or dropping packets. The RED [2] is popular gateway 
based congestion management method and designed to work 
with transport layer protocol such as TCP. A model of RED 
feedback control system with TCP flows has been investigated 
in [3]. RED tends to drop packet randomly with increasing 
probability with increase in congestion. This drop event acts as 
feedback signal to hosts and they reduce their sending rate 
using window control of transport layer protocol.  

 

 

RED aims to control the average queue size by indicating to 
the end hosts when they should temporarily slow down 
transmission of packets. RED takes advantage of the conges-
tion control mechanism of TCP. By randomly dropping pack-
ets prior to periods of high congestion, RED tells the packet 
source to decrease its transmission rate. Assuming the packet 
source is using TCP, it will decrease its transmission rate until 
all the packets reach their destination, indicating that the con-
gestion is cleared. You can use RED as a way to cause TCP to 
slow down transmission of packets. TCP not only pauses, but 
it also restarts quickly and adapts its transmission rate to the 
rate that the network can support. 

Though many algorithmic modifications to basic RED are 
suggested to enhance performance, most of them are less ef-
fective in preventing high packet loss and large jitter.  The 
proposed algorithm RED-AT uses current and few past values 
of average queue size to modulate thresholds. Our scheme 
also restricts variations in thresholds within certain bounds 
and ensures less frequent adjustment of thresholds. As a re-
sult, we observe relatively smaller variations in amplitude of 
instantaneous and average queue size. This improves jitter 
performance of router since variations in delay are reduced. 
Moreover, by preventing packet drops at low to medium traf-
fic load, high throughput and low packet loss are achieved. 

The rest of the paper is organized as follows. Transport 
layer based end-to-end congestion control mechanism such as 
TCP Tahoe, TCP Reno and TCP Westwood are discussed in 
Section 2. Section 3 explains basic RED operation and its ex-
tensions such as adaptive RED [4][5] and reconfigurable thre-
shold RED. Section 4 presents adjustable threshold algorithm 
named RED-AT proposed by us. Simulation results and re-
lated discussion are given in Section 5. Finally, the concluding 
remarks are made in Section 6. 

2  END TO END CONGESTION CONTNROL 

The algorithm proposed by Van Jacobson [1] for internet con-
gestion control based on end-to-end principle has been quite 
successful in avoiding congestion collapse. His work was 
based on adjustment of TCP congestion window to respond to 
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Fig. 1. TCP congestion window dynamics [6].  

 

 

Fig. 2. Window size control in TCP Vegas  

 

network congestion. This window ensures that packets enter 
into the network at the same rate that they are exiting with a 
full window of packets in transit. A connection in this state is 
said to be in equilibrium and congestion collapse is unlikely. 
After Jabobson, many TCP based end-to-end congestion con-
trol algorithms were proposed to improve network stability, 
throughput and fairness and to keep network utilization high.   
In following sections, we shall discuss end-to-end TCP based 
congestion control schemes. 

 
2.1 TCP Tahoe and Reno 

TCP congestion control [6] under Tahoe comprises of three 
parts: Slow start, Congestion Avoidance (CA) and Fast Re-
transmit. Reno algorithm [7] is improvement over Tahoe that 
adds Fast Recovery operation. The operation of both Tahoe and 
Reno is based two variables, congestion window (cwnd) that 
determines number of outstanding segments at any time and 
slow start threshold (ssthresh) is the value up to which conges-
tion window can grow exponentially. The cwnd and ssthresh 
are used to throttle TCP sending rate to match available net-
work bandwidth. 

The slow start begins in the exponential growth phase in-
itially with a cwnd of 1 segment and increases it by one Seg-
ment Size (SS) for each new ACK received (Fig. 1). If the re-
ceiver sends an ACK for every segment, this behavior effec-
tively doubles the window size each round trip of the net-
work. If the receiver supports delayed ACKs, the rate of in-
crease is lower, but still increases by a minimum of one maxi-
mum SS each round-trip time. This behavior continues until 
the cwnd reaches the size of the receiver's advertised window 
or until a loss occurs. Once the cwnd reaches the ssthresh, TCP 
goes into congestion avoidance mode where each new ACK 
increases the cwnd by 1/cwnd. This results in a linear increase 
of the cwnd. 

When a loss occurs due to timeout, half of the current cwnd 
is saved as ssthresh and slow start begins again from its initial 
cwnd. If three duplicate ACKs are received (i.e., four ACKs 
acknowledging the same packet, which are not piggybacked 
on data, and do not change the receiver's advertised window), 
Reno will halve the congestion window (instead of setting it to 
1 MSS like Tahoe), set the slow start threshold equal to the 

new congestion window, perform a fast retransmit, and enter a 
phase called fast recovery. In fast recovery, TCP retransmits the 
missing packet that was signalled by three duplicate ACKs, 
and waits for an acknowledgment of the entire transmit win-
dow before returning to congestion avoidance. If an ACK 
times out, slow start is used. 

New Reno [8] is an improved version of Reno that avoids 
multiple reductions of the cwnd when several segments from 
the same window of data get lost. The work of [9] presents 
analytic model for the throughput of a TCP New Reno bulk 
data transfer as a function of round-trip time (RTT) and loss 
rate. This proposed model can predict steady-state TCP Ne-
wReno throughput for a wide range of network conditions. 

2.2 TCP Vegas 

TCP Vegas [10] was the first attempt to introduce mechanism 
of detecting network congestion before packet losses. The 
working of TCP Vegas is based on measurement of RTT rather 
than lost packets to gauge network capacity. It anticipate onset 
of congestion by computing the difference between the actual 
input rate (cwnd/RTT) and expected input rate (cwnd/RTTmin)  
where cnwd is current window size, RTT is actual round trip 
time and RTTmin is minimum round trip time of a packet. The 
difference in these rates can be translated in to the difference 
between the window size and the number of acknowledge 
packets denoted as Diff given below 

Based on Diff, source updates its window size as  

Fig. 2 illustrates the behaviour of TCP Vegas. If the differ-
ence is smaller than a threshold cwnd+α then the cwnd is addi-
tively increased, whereas if the difference is greater than an-
other threshold cwnd+β then the cwnd is additively decreased; 
finally, if the difference is smaller than cwnd+β and greater 
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a) On ACK reception: 

     cwnd is increased accordingly to the Reno  

     algorithm; 

     the end-to-end kb̂ is computed; 

b) When 3 DUPACKs are received: 

     ssthresh =max(2, ( kb̂ * RTTmin) / seg_size); 

     cwnd = ssthresh; 

c) When coarse timeout expires: 

    ssthresh = max(2, ( kb̂ * RTTmin) / seg_size); 

    cwnd = 1; 

Fig. 3. TCP Westwood Algorithm 

than cwnd+α, then the cwnd is kept constant. TCP vegas tries to 
keep at least α packets but no more than β packets in a queue.  
The reason behind this is that TCP Vegas attempts to detect 
and utilize the extra bandwidth whenever it becomes available 
without congesting the network. This when there is only one 
connection, the window size of TCP Vegas converges to a 
point that lies between cwnd+α and cwnd+β. This mechanism is 
fundamentally different from that used by TCP Reno. TCP 
Reno always updates its window size to guarantee full utiliza-
tion of available bandwidth, leading to constant packet losses 
where a TCP Vega does not cause any oscillation in window 
size once it converges to an equilibrium point. 

TCP Vegas does not have any mechanism that handles the 
rerouting of connection. If the route of a connection is changed 
by a gateway switch, then without an explicit signal from 
switch, the end host cannot directly detect it. If the new route 
has a shorter propagation delay, this does not cause any seri-
ous problem because most likely some packets will experience 
shorter round trip delay and RTTmin will be updated. On the 
other hand, if the new route for the connection has a longer 
propagation delay, the connection will not be able to tell 
whether the increase in the round trip delay is due to conges-
tion in the networks or change in the route. It was observed 
that the performance of TCP Vegas decreases significantly 
when the network RTT exceeds 50ms. 

2.3 TCP Westwood+ 

TCP Westwood [11] is modification to TCP New Reno [8] and 
it applies to sender-side-only. Its working is based on the idea 
of estimating available end-to-end bandwidth by counting and 
filtering the returning ACKs and adaptively adjusts the 
ssthresh and cwnd after congestion episode i.e. after timeout or 
after detecting three duplicate ACKs. Unlike TCP Reno, which 
halves the congestion window after three duplicate ACKS, TCP 
Westwood sets cwnd and ssthresh which are consistent with 
estimated available bandwidth at the time congestion occurs. 
This ensures fast recovery with better throughput and delay 
performance. TCP Westwood+ works even in the presence of 
ACK compression. 

The amount of data acknowledged between ACK reception 
is then used to compute the bandwidth of the link for the con-
sidered ACK interval. The calculated bandwidth is then 
passed through Tustin approximation low pass filter to filter 
out the high frequency components. A simplified form of the 
filter [11] that is used in the implementation of the protocol is 
given as: 

Where a is a weighing factor set to 0.9 and bk and kb̂  are the 
instantaneous and the average measurement of the available 
bandwidth respectively at the time instant tk.When three 
DUPACKs are received, both the congestion window (cwnd) 
and the slow start threshold (ssthresh) are set equal to the esti-
mated bandwidth  times the minimum measured round trip 
time (RTTmin); when a coarse timeout expires the ssthresh is 
set as before while the cwnd is set equal to one. The pseudo 
code of the Westwood+ algorithm is given in Fig. 3. 

The TCP Westwood+ is particularly effective in wireless 
links where bursty losses due to erroneous radio channel are 
often misinterpreted as a symptom of congestion by current 
TCP schemes and thus lead to an unnecessary window reduc-

tion. TCP Westwood+ is able to discriminate the of packet loss 
(wireless channel error or congestion) by estimating end-to-
end bandwidth. TCP Westwood+, TCP New Reno and Vegas 
TCP are evaluated and compared in [12] to investigate their 
effectiveness in terms of goodput, fairness and friendliness. 
The results show that Westwood+ remarkably improves utili-
zation of wireless links. An NS-3 implementation of [13] 
shows the tradeoffs between TCP Westwood and TCP West-
wood+ in terms of congestion and aggressiveness. 

4 GATEWAY BASED CONGESTION CONTROL 

End-to-end congestion control mechanisms that we discussed 
in previous section act after the occurrence of network conges-
tion at overflowing gateways. This would lead to large queue 
size at gateways and significantly increase average delay in 
the network. It would be more efficient to detect incipient of 
congestion at gateway itself and provide feedback end hosts 
either by dropping packets or marking congestion bits in 
packets. Only the gateway has a unified view of the queuing 
behaviour over time. In addition, a gateway is shared by many 
active connections with a wide range of roundtrip times, toler-
ances of delay, throughput requirements, etc.; decisions about 
the duration and magnitude of transient congestion to be al-
lowed at the gateway are best made by the gateway itself. 

A simple method for a gateway to notify congestion to 
sources is to drop packets when queue becomes full, this is 
called Tail Drop. The drawback of Tail Drop gateway is global 
synchronization; a phenomenon where all senders who share 
common bottleneck router/gateway link slows down at the 
same time resulting in sharp decrease in link utilization. The 
tail-drop routers are also biased against the bursty flows be-
cause when a burst of packets from a sender arrives on fully 
occupied queue a sustained packet drop belongs same source 
occurs. To circumvent these problems, a gateway/router 
should play active role in detecting/preventing congestion. 
This is known as active queue management (AQM). The most 
popular AQM method is Random Early Detection (RED) [2] that 
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Upon packet loss event: 

   If (now – last_update) > freez_time) 

       pm = pm + d1; 

    last_update = now; 

Upon link idle event: 

 If (now – last_update) > freez_time) 

  pm = pm - d2; 

            last_update = now; 

 

Fig. 4. Pseudocode for Adaptive RED algorithm [4] 

effectively handles problem of global synchronization and bias 
against bursty flows. Its principle is to monitor average queue 
size and keep it low by dropping packets with some probabil-
ity before queue gets full. In this way, it achieves high link 
utilization and low average delay simultaneously. In [14], 
various variants of RED techniques have been presented and 
analyzed with respect to queue length stability and delay. 
An alternative method to notify sources in RED is to modify 
congestion bits in packet header which explicitly sends feed-
back about network congestion level. This is called Explicit 
Congestion Notificacion (ECN). ECN [15] is an optional feature 
that may be used between two ECN-enabled endpoints when 
the underlying network infrastructure also supports it. When 
ECN is successfully negotiated, an ECN-aware router may set 
a mark in the IP header instead of dropping a packet in order 
to signal impending congestion. The receiver of the packet 
echoes the congestion indication to the sender, which reduces 
its transmission rate as though it detected a dropped packet. 
As expected, ECN reduces the number of packets dropped by 
a TCP connection, which, by avoiding a retransmission, re-
duces latency and especially jitter. Congestion control scheme 
proposed in [16] combines feedback of ECN bits and available 
bandwidth estimate to adjust behavior of TCP sources to 
achieve high efficiency. 

 
4.1 Basic RED 

RED algorithm for AQM works on monitoring average 
queue size and dropping packets with increasing probability 
as average queue size increases. The objective is to detect inci-
pient of congestion well in advance and notify end hosts, al-
lowing them to reduce their sending rate that avoids router 
queue overflow and excessive packet dropping. The value of 
average queue size is compared with two thresholds; upper 
threshold minth and upper threshold maxth. When average 
queue size increases above some value called minth packets are 
randomly dropped with probability that increases from 0 at 
minth to maximum value maxp at maxth. All incoming packets 
are dropped if average queue size exceeds maxth. With early 
congestion notification and burst absorption, RED simulta-
neously achieves low average queuing delay and high 
throughput. Although RED is useful in detecting congestion, 
its working is very sensitive to parameters such as minth, maxth, 
maxp and wq. Moreover, RED performance depends on number 
of connections multiplexed across the link. To address short-
coming of RED, adaptive mechanism are researched by [4] and 
[5]. 

4.2 Adaptive RED 

The original adaptive RED (ARED) given by [4] performs di-
rectly on link utilization and packet drops rather than instan-
taneous or average queue size. It maintains a single probabil-
ity, pm, which it uses to mark (or drop) packets. The algorithm 
increments pm if packets are being excessively dropped due to 
buffer overflow, thus increasing the rate at which it sends back 
congestion notification to hosts. Conversely, if the queue 
buffer becomes empty or if the link is idle, it decreases mark-
ing probability pm. This effectively allows the algorithm to 
send back congestion notification at the correct rate. Fig. 4 

shows ARED algorithm where last_update is the last time when 
pm is updated, freez_time is determines the minimum time in-
terval between two successive updates of pm and d1 & d2 are 
amount by which pm is incremented/decremented when queue 
buffer overflows/empties.  The d1 was selected larger than d2 to 
react quickly to substantial rise in traffic load. The paramters 
freez_time, d1 and d2 control how quickly the marking probabil-
ity changes over time. 

Another proposal [5] tunes parameter maxp for making RED 

adaptive. It is revised version of ARED with several algo-

rithmic modifications and can be implemented as simple ex-

tension to RED routers. The overall idea is quite similar to 

original ARED of keeping average queue size between minth 

and maxth by adapting maxp but with following differences.  

 

 maxp is intended to keep average queue size halfway 

between minth and maxth 

 Adaptation of maxp is in small steps and slow over the 

period typically greater than RTT  

 maxp is constrained within range [0.01, 0.5] and AIMD 

is adopted. 
Instead of using multiplicative increase and decrease, [5] 

uses additive increase and multiplicative decrease (AIMD) 
strategy for adjusting maxp. 

4.3 Reconfigurable Threshold RED 

The RED behaviour also depends on thresholds. Too small 
values of thresholds would cause many timeouts and load the 
network heavily; on the other hand, if the thresholds are too 
large, large size of packet queue at router will incur large de-
lay even if network is lightly loaded. Many researchers have 
focused on adaption in thresholds to improve RED perform-
ance. The proposal of [17] claims to improve throughput and 
packet drop rate performance with adaptive threshold tech-
nique. The basic idea is that the average queue size should 
reach the maximum threshold when or before the instantane-
ous queue size reaches the maximum buffer size. The value of 
minth is initially set to 4 packets and maxth is set to 2 * minth ac-
cording to rule-of-thumb [18]. During operation, lower 
threshold minth is varied depending on burst and number of 
flows. When the minth reached the maximum value called tar-
get, maxth is changed dynamically as per equation below 
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Upon every packe arrival: 

if (qavg < min+) {  

      ++cnt1;    cnt2=0; cnt3=0; 

       if(cnt1 > 4) { 

             minth  += α  (min+ – min ̶ ) ; 

 maxth += β (max+ – max ̶ ) ; 

          if (minth  >  min+)    minth = min+  ; 

          if (maxth  > max+)   maxth = max+  ; 

        cnt1=0; 

        } 

   } 

 Else if (qavg > max ̶  ) { 

          ++cnt2;   cnt1=0;   cnt3=0; 

    if (cnt2 > 4) { 

        maxth − = β (max+ – max ̶ ) ; 

   minth  − = α  (min+ – min ̶ )  ; 

         if  (maxth < max ̶ )   maxth = max ̶  ; 

  if  (minth < min ̶)    minth = min ̶  ; 

         cnt2=0; 

   } 

       } 

Else 

{       ++cnt3;     cnt1=cnt2=0; 

          If (cnt3 > 4) { 

     minth = minth0 ; 

     maxth = maxth0 ; 

              cnt3=0; 

    } 

} 

 
Fig. 6. Pseudocode of proposed RED-AT Algorithm  
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Fig. 5. Bounds on upper and lower thresholds.  

 

 

 where, n=no. of nodes 

k= burst size 

a0 = current value of average queue size 

q0= instantaneous value of queue 

 

Work of [19] proposes an algorithm named Preferential Dy-

namic Threshold – RED (PDT-RED). In this method, packets 

are classified into several types. Each type of packet has a pri-

ority set in header by sending host. The minimum and maxi-

mum thresholds are varied with unused buffer space and pri-

ority of a packet. 

5 PROPOSED RED-AT ALGORITHM 

As pointed out earlier that operation of RED is very sensitive 
to its parameters such as maxp, minth, maxth, wq, etc. The fix val-
ue often degrades the performance of RED. There is no single 
set of RED parameters that can work well under difference 
congestion scenarios; therefore, adaptive strategies have been 
devised for practical implementation of RED. Adaptive me-
chanism suggested by [4] is based on link utilization and 
packet loss rather than average or instantaneous queue size to 
change packet marking probability.  

To achieve better performance in terms of drop rate and 
link utilization, we adjust thresholds adaptively based on val-
ues of average queue size over a few past observations and 
hence this proposed method is termed as Random Early De-
tection with Adaptive Threshold (RED-AT). In this method, 
the thresholds are adjusted around their nominal values (minth0 
and maxth0)  within finite upper and lower limits. As shown in 
Fig. 5  minth can be adjusted between two bound  i.e. min+ and 
min ̶ whereas max+ and max̶ are bounds around maxth. Initially 
minimum and maximum threshold are set to nominal values. 
During operation, thresholds are tuned depending on value of 
average queue size observed over past few periods. 

The drop probability plot is divided into three regions. In 
region a, where average queue size is low, we gradually in-
crease minth by amount equal to fraction of dynamic range of 
minth factor α and inrease maxth by fraction of dynamic range of 

maxth. This makes sure that algorithm is gentle and less aggres-
sive under low traffic. In region c, where average queue size is 
high, we gradually decrease minth by factor α and maxth by fac-
tor of β. This makes sure that the average queue size does not 
become exceedingly large and hence delay. The value of β is   
smaller than α because link underutilization can occur if con-
gestion management is too conservative or too aggressive but 
packet loss occur only when congestion management is too 
conservative.  The pseudocode for adaptive threshold adjust-
ment is given in Fig. 6. The following terms and symbols are 
used in the pseudocod. 

 qavg→ average queue size 

 minth0, maxth0 → initialized value of minth and maxth re-

spectively  

 min+ , min ̶  → upper and lower bound on dynamic 

range of minth  

 max+ , max ̶  → upper and lower bound on dynamic 

range of maxth 
Our method not only uses current average value but also 

few past average values of queue size to decide the region of 
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Fig. 8. Queue dynamics in convetinal RED.  
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Fig. 9. Queue dynamics in RED-AT  
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Fig. 7. Network topology for simulation 

 

operation and corresponding threshold adjustment action. 
These new threshold values will be maintained at least for few 
periods (till next region of operation is decided). This avoids 
overly updates in thresholds upon every observation of aver-
age queue size and thus reduces oscillations in queue. The 
swing in instantaneous and average queue size Therefore, 
proposed RED-AT scheme exhibits lower variations in delay 
and hence offer low jitter.  Moreover, it renders lower packet 
drop rate by keeping minth at higher value under low to me-
dium traffic load. 

6 SIMULATION RESULTS AND DISCUSSIONS 

The main objective of the simulation experiments is to ver-
ify that RED-AT keeps the oscillation in average queue size 
within limits under varying traffic load conditions. Simula-
tions also verify that proposed scheme indeed improves the 
throughput, drop rate and jitter performance. We conducted 
simulations on ns-2 [20] network simulator to evaluate the 
performance of RED-AT, conventional RED and adaptive RED. 
The network topology of our set up is shown in Fig. 7 where 
senders (S1 to Sn shown as circles) are connected to one end to 
router R1 and sink node is connected to router R2. Hence, the 
congested link under consideration is between R1-R2. Above 
mentioned three AQM scheme will be implemented at router 
R1 which has queue buffer size of 50 packets. Traffic is gener-
ated by TCP sources connected to node S1 to Sn. In our experi-
ments, mix traffic is generated with 70 FTP sources and 30 best 
effort (HTTP) sources. Unless otherwise stated, we assume 
that all packets generated by the senders are 1000 bytes long. 

6.1 Experiment 1 

In this experiment we investigate dynamic behaviour of con-
ventional RED and proposed RED-AT congestion control 
scheme with moderately congested link. Fig. 8 and Fig. 9 show 
instantaneous and average queue size variation with time con-
sidering number of TCP flows N=80, maxp=0.1 and wq=0.002 for 
RED and RED-AT respectively. In both cases, lower threshold 
minth=10 packets and upper threshold maxth=30 packets are 
considered. From results, we noticed that the oscillations in 
both instantaneous and average queue size are reduced when 
RED-AT is used as compared to RED. Due to small variation 
in average queue size, RED-AT limits delay variations. More-
over, RED-AT keeps average queue size remains slightly 
higher than RED since RED-AT avoids excessive packet drops 

by adjusting thresholds. This enhances utilization and 
proves throughput. 

6.2 Experiment 2 

In this experiment, we evaluate the performance of RED, 
ARED and RED-AT in terms of throughput, jitter and drop 
rate by varying number of TCP flows from 5 to 100. Each point 
on the result plot is obtained from 150s simulation run and 
statistics are collected/recorded simultaneously in result file. 
Once again, all three schemes use parameters wq =0.002, maxp 
=0.1, minth =10 packets and maxth=30 packets.  

The simulation results reveal the ability of proposed RED-
AT scheme to avoid excessive packet drop rate as compared to 
other two schemes as seen from Fig. 10. This is because RED-
AT prevents early initiation of packet drop at low queue size 
and keeps average queue size away from maxth. Comparing 
RED and ARED, at low to medium congestion, packet drop 
rate of RED closely follows ARED but in high traffic condi-
tions, ARED exhibits lower drop rate than RED. The through-
put performance shown in Fig. 11 illustrates success of RED-
AT in maintaining higher throughput. The throughput of RED 
declines sharply under high traffic load whereas throughput 
of ARED and RED-AT converges under high traffic load. As 
illustrated in experiment 1, variation in instantaneous and av-
erage queue size in case of RED-AT is much smaller than RED 
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Fig. 12. Jitter vs. number of flows  
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Fig. 10. Drop rate vs. number of flows  
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Fig. 11. Throughput vs. number of flows  

 

and ARED. Hence RED-AT offers fewer variations in delay 
which is reflected in the jitter plot shown in Fig. 12. Under low 
to medium traffic load, RED-AT and ARED have roughly 
same jitter but at higher traffic load RED-AT has lower jitter 
than ARED. Due to large fluctuations in queue size, RED has 
highest jitter. 

7 CONCLUSION 

In this paper, we explored the opportunity of improving basic 
RED mechanism by adaptively adjusting the thresholds. 
Unlike other schemes which work on current value of instan-
taneous or average queue size, the proposed RED-AT algo-
rithm uses current as well as few past values of average queue 
length to correctly predict the queue behavior and adjust the 
thresholds accordingly. It also restricts the dynamic range of 
threshold within bounds. This has resulted in reduced swing 
in the oscillations of actual and average queue size. RED-AT is 
also able to keep high utilization of link by maintaining larger 
average queue length, thus exhibiting high throughput com-
pared to RED and ARED. Due to more stablility in instantane-
ous and average queue, RED-AT offers lowest jitter. Besides it 
keeps drop rate lower by keeping high value of low threshold 
under low to medium traffic load. 
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