
International Journal of Scientific & Engineering Research, Volume 5, Issue 11, November-2014
ISSN 2229-5518

IJSER © 2014

http://www.ijser.org

Enhancing Performance of Internetworking with
Novel RED-AT Congestion Control Algorithm

Z.M.Patel, Dr. U.D.Dalal

Abstract— Congestion Control on Internet has drawn attention of many researchers since its presence from early 80’s. This lead to

development of congestion control algorithms such as Droptail, RED and its variants, Random Exponential Marking (REM), Adaptive

Virtual Queue (AVQ) etc. Out of these, RED has been promising and widely used in router for long. This paper proposes RED with

Adaptive Threshold (RED-AT) algorithm which is based on the current and few past observations of average queue size to adjust

thresholds. Thus it can correctly predict the behavior of queue dynamic and make appropriate adjustment in upper and lower thresholds. It

is observed the proposed RED-AT scheme mitigates oscillations in average and instantaneous queue size and enhances link utilization.

Simulation results show improvement in throughput, jitter and packet loss performance of a router.

Index Terms— Congestion control, RTT, Adaptive RED, RED-AT, Window control,bandwidth, ACK.

—————————— ——————————

1 INTRODUCTION

ongestion on internet has been under constant investiga-
tion since its presence is first detected in mid 80s. The
sophistication of internetworking would be useless if we

do not cater the problem of congestion. This problem is now
becoming more and more relevant with substantial increase in
internet traffic in last decade. Congestion collapse [1] is that
state that a packet switched data network can reach when little
or no useful communication happens. Congestion usually oc-
curs at “choke points” in the networks when total incoming
traffic to a node exceeds outgoing bandwidth capacity. Con-
gestion control deals with controlling data traffic entry into a
communication network so as to avoid overloading of rou-
ters/gateways and hence avoids congestion collapse.

The congestion control schemes can be classified into two
categories: source based and gateway based. In a source based
scheme, the presence of congestion is detected through the
effects of congestion, e.g., packet loss, increased round trip
time, changes in the throughput gradient etc., rather than the
congestion itself e.g. overflowing queues. After detection of
congestion, transport layer at sender reduces window size to
reduce sending rate. Gateway based scheme detects incipient
of congestion through large queue size and notifies host by
marking or dropping packets. The RED [2] is popular gateway
based congestion management method and designed to work
with transport layer protocol such as TCP. A model of RED
feedback control system with TCP flows has been investigated
in [3]. RED tends to drop packet randomly with increasing
probability with increase in congestion. This drop event acts as
feedback signal to hosts and they reduce their sending rate
using window control of transport layer protocol.

RED aims to control the average queue size by indicating to
the end hosts when they should temporarily slow down
transmission of packets. RED takes advantage of the conges-
tion control mechanism of TCP. By randomly dropping pack-
ets prior to periods of high congestion, RED tells the packet
source to decrease its transmission rate. Assuming the packet
source is using TCP, it will decrease its transmission rate until
all the packets reach their destination, indicating that the con-
gestion is cleared. You can use RED as a way to cause TCP to
slow down transmission of packets. TCP not only pauses, but
it also restarts quickly and adapts its transmission rate to the
rate that the network can support.

Though many algorithmic modifications to basic RED are
suggested to enhance performance, most of them are less ef-
fective in preventing high packet loss and large jitter. The
proposed algorithm RED-AT uses current and few past values
of average queue size to modulate thresholds. Our scheme
also restricts variations in thresholds within certain bounds
and ensures less frequent adjustment of thresholds. As a re-
sult, we observe relatively smaller variations in amplitude of
instantaneous and average queue size. This improves jitter
performance of router since variations in delay are reduced.
Moreover, by preventing packet drops at low to medium traf-
fic load, high throughput and low packet loss are achieved.

The rest of the paper is organized as follows. Transport
layer based end-to-end congestion control mechanism such as
TCP Tahoe, TCP Reno and TCP Westwood are discussed in
Section 2. Section 3 explains basic RED operation and its ex-
tensions such as adaptive RED [4][5] and reconfigurable thre-
shold RED. Section 4 presents adjustable threshold algorithm
named RED-AT proposed by us. Simulation results and re-
lated discussion are given in Section 5. Finally, the concluding
remarks are made in Section 6.

2 END TO END CONGESTION CONTNROL

The algorithm proposed by Van Jacobson [1] for internet con-
gestion control based on end-to-end principle has been quite
successful in avoiding congestion collapse. His work was
based on adjustment of TCP congestion window to respond to

C

————————————————

 Z.M.Patel is currently pursuing PhD degree program in Electronics Engi-
neering from NIT, Surat, India. E-mail: zmp@eced.svnit.ac.in

 Dr. U.D.Dalal is an Associate Professor in Dept. of Electronics Engineer-
ing, NIT Surat, Inida. E-mail: udd@eced.svnit.ac.in
(This information is optional; change it according to your need.)

890

IJSER

International Journal of Scientific & Engineering Research Volume 5, Issue 11, November-2014
ISSN 2229-5518

IJSER © 2014

http://www.ijser.org

Fig. 1. TCP congestion window dynamics [6].

Fig. 2. Window size control in TCP Vegas

network congestion. This window ensures that packets enter
into the network at the same rate that they are exiting with a
full window of packets in transit. A connection in this state is
said to be in equilibrium and congestion collapse is unlikely.
After Jabobson, many TCP based end-to-end congestion con-
trol algorithms were proposed to improve network stability,
throughput and fairness and to keep network utilization high.
In following sections, we shall discuss end-to-end TCP based
congestion control schemes.

2.1 TCP Tahoe and Reno

TCP congestion control [6] under Tahoe comprises of three
parts: Slow start, Congestion Avoidance (CA) and Fast Re-
transmit. Reno algorithm [7] is improvement over Tahoe that
adds Fast Recovery operation. The operation of both Tahoe and
Reno is based two variables, congestion window (cwnd) that
determines number of outstanding segments at any time and
slow start threshold (ssthresh) is the value up to which conges-
tion window can grow exponentially. The cwnd and ssthresh
are used to throttle TCP sending rate to match available net-
work bandwidth.

The slow start begins in the exponential growth phase in-
itially with a cwnd of 1 segment and increases it by one Seg-
ment Size (SS) for each new ACK received (Fig. 1). If the re-
ceiver sends an ACK for every segment, this behavior effec-
tively doubles the window size each round trip of the net-
work. If the receiver supports delayed ACKs, the rate of in-
crease is lower, but still increases by a minimum of one maxi-
mum SS each round-trip time. This behavior continues until
the cwnd reaches the size of the receiver's advertised window
or until a loss occurs. Once the cwnd reaches the ssthresh, TCP
goes into congestion avoidance mode where each new ACK
increases the cwnd by 1/cwnd. This results in a linear increase
of the cwnd.

When a loss occurs due to timeout, half of the current cwnd
is saved as ssthresh and slow start begins again from its initial
cwnd. If three duplicate ACKs are received (i.e., four ACKs
acknowledging the same packet, which are not piggybacked
on data, and do not change the receiver's advertised window),
Reno will halve the congestion window (instead of setting it to
1 MSS like Tahoe), set the slow start threshold equal to the

new congestion window, perform a fast retransmit, and enter a
phase called fast recovery. In fast recovery, TCP retransmits the
missing packet that was signalled by three duplicate ACKs,
and waits for an acknowledgment of the entire transmit win-
dow before returning to congestion avoidance. If an ACK
times out, slow start is used.

New Reno [8] is an improved version of Reno that avoids
multiple reductions of the cwnd when several segments from
the same window of data get lost. The work of [9] presents
analytic model for the throughput of a TCP New Reno bulk
data transfer as a function of round-trip time (RTT) and loss
rate. This proposed model can predict steady-state TCP Ne-
wReno throughput for a wide range of network conditions.

2.2 TCP Vegas

TCP Vegas [10] was the first attempt to introduce mechanism
of detecting network congestion before packet losses. The
working of TCP Vegas is based on measurement of RTT rather
than lost packets to gauge network capacity. It anticipate onset
of congestion by computing the difference between the actual
input rate (cwnd/RTT) and expected input rate (cwnd/RTTmin)
where cnwd is current window size, RTT is actual round trip
time and RTTmin is minimum round trip time of a packet. The
difference in these rates can be translated in to the difference
between the window size and the number of acknowledge
packets denoted as Diff given below

Based on Diff, source updates its window size as

Fig. 2 illustrates the behaviour of TCP Vegas. If the differ-
ence is smaller than a threshold cwnd+α then the cwnd is addi-
tively increased, whereas if the difference is greater than an-
other threshold cwnd+β then the cwnd is additively decreased;
finally, if the difference is smaller than cwnd+β and greater

)1(

)(exp

min
min

min

RTT
RTT

cwnd

RTT

cwnd

RTTrateactualrateectedDiff

)2(;

;1

;1

otherwisecwnd

cwndDiffifcwnd

cwndDiffifcwnd

cwnd

891

IJSER

http://en.wikipedia.org/wiki/Slow-start#Fast_recovery

International Journal of Scientific & Engineering Research Volume 5, Issue 11, November-2014
ISSN 2229-5518

IJSER © 2014

http://www.ijser.org

a) On ACK reception:

 cwnd is increased accordingly to the Reno

 algorithm;

 the end-to-end kb̂ is computed;

b) When 3 DUPACKs are received:

 ssthresh =max(2, (kb̂ * RTTmin) / seg_size);

 cwnd = ssthresh;

c) When coarse timeout expires:

 ssthresh = max(2, (kb̂ * RTTmin) / seg_size);

 cwnd = 1;

Fig. 3. TCP Westwood Algorithm

than cwnd+α, then the cwnd is kept constant. TCP vegas tries to
keep at least α packets but no more than β packets in a queue.
The reason behind this is that TCP Vegas attempts to detect
and utilize the extra bandwidth whenever it becomes available
without congesting the network. This when there is only one
connection, the window size of TCP Vegas converges to a
point that lies between cwnd+α and cwnd+β. This mechanism is
fundamentally different from that used by TCP Reno. TCP
Reno always updates its window size to guarantee full utiliza-
tion of available bandwidth, leading to constant packet losses
where a TCP Vega does not cause any oscillation in window
size once it converges to an equilibrium point.

TCP Vegas does not have any mechanism that handles the
rerouting of connection. If the route of a connection is changed
by a gateway switch, then without an explicit signal from
switch, the end host cannot directly detect it. If the new route
has a shorter propagation delay, this does not cause any seri-
ous problem because most likely some packets will experience
shorter round trip delay and RTTmin will be updated. On the
other hand, if the new route for the connection has a longer
propagation delay, the connection will not be able to tell
whether the increase in the round trip delay is due to conges-
tion in the networks or change in the route. It was observed
that the performance of TCP Vegas decreases significantly
when the network RTT exceeds 50ms.

2.3 TCP Westwood+

TCP Westwood [11] is modification to TCP New Reno [8] and
it applies to sender-side-only. Its working is based on the idea
of estimating available end-to-end bandwidth by counting and
filtering the returning ACKs and adaptively adjusts the
ssthresh and cwnd after congestion episode i.e. after timeout or
after detecting three duplicate ACKs. Unlike TCP Reno, which
halves the congestion window after three duplicate ACKS, TCP
Westwood sets cwnd and ssthresh which are consistent with
estimated available bandwidth at the time congestion occurs.
This ensures fast recovery with better throughput and delay
performance. TCP Westwood+ works even in the presence of
ACK compression.

The amount of data acknowledged between ACK reception
is then used to compute the bandwidth of the link for the con-
sidered ACK interval. The calculated bandwidth is then
passed through Tustin approximation low pass filter to filter
out the high frequency components. A simplified form of the
filter [11] that is used in the implementation of the protocol is
given as:

Where a is a weighing factor set to 0.9 and bk and kb̂ are the
instantaneous and the average measurement of the available
bandwidth respectively at the time instant tk.When three
DUPACKs are received, both the congestion window (cwnd)
and the slow start threshold (ssthresh) are set equal to the esti-
mated bandwidth times the minimum measured round trip
time (RTTmin); when a coarse timeout expires the ssthresh is
set as before while the cwnd is set equal to one. The pseudo
code of the Westwood+ algorithm is given in Fig. 3.

The TCP Westwood+ is particularly effective in wireless
links where bursty losses due to erroneous radio channel are
often misinterpreted as a symptom of congestion by current
TCP schemes and thus lead to an unnecessary window reduc-

tion. TCP Westwood+ is able to discriminate the of packet loss
(wireless channel error or congestion) by estimating end-to-
end bandwidth. TCP Westwood+, TCP New Reno and Vegas
TCP are evaluated and compared in [12] to investigate their
effectiveness in terms of goodput, fairness and friendliness.
The results show that Westwood+ remarkably improves utili-
zation of wireless links. An NS-3 implementation of [13]
shows the tradeoffs between TCP Westwood and TCP West-
wood+ in terms of congestion and aggressiveness.

4 GATEWAY BASED CONGESTION CONTROL

End-to-end congestion control mechanisms that we discussed
in previous section act after the occurrence of network conges-
tion at overflowing gateways. This would lead to large queue
size at gateways and significantly increase average delay in
the network. It would be more efficient to detect incipient of
congestion at gateway itself and provide feedback end hosts
either by dropping packets or marking congestion bits in
packets. Only the gateway has a unified view of the queuing
behaviour over time. In addition, a gateway is shared by many
active connections with a wide range of roundtrip times, toler-
ances of delay, throughput requirements, etc.; decisions about
the duration and magnitude of transient congestion to be al-
lowed at the gateway are best made by the gateway itself.

A simple method for a gateway to notify congestion to
sources is to drop packets when queue becomes full, this is
called Tail Drop. The drawback of Tail Drop gateway is global
synchronization; a phenomenon where all senders who share
common bottleneck router/gateway link slows down at the
same time resulting in sharp decrease in link utilization. The
tail-drop routers are also biased against the bursty flows be-
cause when a burst of packets from a sender arrives on fully
occupied queue a sustained packet drop belongs same source
occurs. To circumvent these problems, a gateway/router
should play active role in detecting/preventing congestion.
This is known as active queue management (AQM). The most
popular AQM method is Random Early Detection (RED) [2] that

)3(

2

1ˆˆ
11

 kkkk bb

a
bab

892

IJSER

International Journal of Scientific & Engineering Research Volume 5, Issue 11, November-2014
ISSN 2229-5518

IJSER © 2014

http://www.ijser.org

Upon packet loss event:

 If (now – last_update) > freez_time)

 pm = pm + d1;

 last_update = now;

Upon link idle event:

 If (now – last_update) > freez_time)

 pm = pm - d2;

 last_update = now;

Fig. 4. Pseudocode for Adaptive RED algorithm [4]

effectively handles problem of global synchronization and bias
against bursty flows. Its principle is to monitor average queue
size and keep it low by dropping packets with some probabil-
ity before queue gets full. In this way, it achieves high link
utilization and low average delay simultaneously. In [14],
various variants of RED techniques have been presented and
analyzed with respect to queue length stability and delay.
An alternative method to notify sources in RED is to modify
congestion bits in packet header which explicitly sends feed-
back about network congestion level. This is called Explicit
Congestion Notificacion (ECN). ECN [15] is an optional feature
that may be used between two ECN-enabled endpoints when
the underlying network infrastructure also supports it. When
ECN is successfully negotiated, an ECN-aware router may set
a mark in the IP header instead of dropping a packet in order
to signal impending congestion. The receiver of the packet
echoes the congestion indication to the sender, which reduces
its transmission rate as though it detected a dropped packet.
As expected, ECN reduces the number of packets dropped by
a TCP connection, which, by avoiding a retransmission, re-
duces latency and especially jitter. Congestion control scheme
proposed in [16] combines feedback of ECN bits and available
bandwidth estimate to adjust behavior of TCP sources to
achieve high efficiency.

4.1 Basic RED

RED algorithm for AQM works on monitoring average
queue size and dropping packets with increasing probability
as average queue size increases. The objective is to detect inci-
pient of congestion well in advance and notify end hosts, al-
lowing them to reduce their sending rate that avoids router
queue overflow and excessive packet dropping. The value of
average queue size is compared with two thresholds; upper
threshold minth and upper threshold maxth. When average
queue size increases above some value called minth packets are
randomly dropped with probability that increases from 0 at
minth to maximum value maxp at maxth. All incoming packets
are dropped if average queue size exceeds maxth. With early
congestion notification and burst absorption, RED simulta-
neously achieves low average queuing delay and high
throughput. Although RED is useful in detecting congestion,
its working is very sensitive to parameters such as minth, maxth,
maxp and wq. Moreover, RED performance depends on number
of connections multiplexed across the link. To address short-
coming of RED, adaptive mechanism are researched by [4] and
[5].

4.2 Adaptive RED

The original adaptive RED (ARED) given by [4] performs di-
rectly on link utilization and packet drops rather than instan-
taneous or average queue size. It maintains a single probabil-
ity, pm, which it uses to mark (or drop) packets. The algorithm
increments pm if packets are being excessively dropped due to
buffer overflow, thus increasing the rate at which it sends back
congestion notification to hosts. Conversely, if the queue
buffer becomes empty or if the link is idle, it decreases mark-
ing probability pm. This effectively allows the algorithm to
send back congestion notification at the correct rate. Fig. 4

shows ARED algorithm where last_update is the last time when
pm is updated, freez_time is determines the minimum time in-
terval between two successive updates of pm and d1 & d2 are
amount by which pm is incremented/decremented when queue
buffer overflows/empties. The d1 was selected larger than d2 to
react quickly to substantial rise in traffic load. The paramters
freez_time, d1 and d2 control how quickly the marking probabil-
ity changes over time.

Another proposal [5] tunes parameter maxp for making RED

adaptive. It is revised version of ARED with several algo-

rithmic modifications and can be implemented as simple ex-

tension to RED routers. The overall idea is quite similar to

original ARED of keeping average queue size between minth

and maxth by adapting maxp but with following differences.

 maxp is intended to keep average queue size halfway

between minth and maxth

 Adaptation of maxp is in small steps and slow over the

period typically greater than RTT

 maxp is constrained within range [0.01, 0.5] and AIMD

is adopted.
Instead of using multiplicative increase and decrease, [5]

uses additive increase and multiplicative decrease (AIMD)
strategy for adjusting maxp.

4.3 Reconfigurable Threshold RED

The RED behaviour also depends on thresholds. Too small
values of thresholds would cause many timeouts and load the
network heavily; on the other hand, if the thresholds are too
large, large size of packet queue at router will incur large de-
lay even if network is lightly loaded. Many researchers have
focused on adaption in thresholds to improve RED perform-
ance. The proposal of [17] claims to improve throughput and
packet drop rate performance with adaptive threshold tech-
nique. The basic idea is that the average queue size should
reach the maximum threshold when or before the instantane-
ous queue size reaches the maximum buffer size. The value of
minth is initially set to 4 packets and maxth is set to 2 * minth ac-
cording to rule-of-thumb [18]. During operation, lower
threshold minth is varied depending on burst and number of
flows. When the minth reached the maximum value called tar-
get, maxth is changed dynamically as per equation below

)4())1(1()1(maxmax 00 qwaw nknk
thth

893

IJSER

International Journal of Scientific & Engineering Research Volume 5, Issue 11, November-2014
ISSN 2229-5518

IJSER © 2014

http://www.ijser.org

Upon every packe arrival:

if (qavg < min+) {

 ++cnt1; cnt2=0; cnt3=0;

 if(cnt1 > 4) {

 minth += α (min+ – min ̶) ;

 maxth += β (max+ – max ̶) ;

 if (minth > min+) minth = min+ ;

 if (maxth > max+) maxth = max+ ;

 cnt1=0;

 }

 }

 Else if (qavg > max ̶) {

 ++cnt2; cnt1=0; cnt3=0;

 if (cnt2 > 4) {

 maxth − = β (max+ – max ̶) ;

 minth − = α (min+ – min ̶) ;

 if (maxth < max ̶) maxth = max ̶ ;

 if (minth < min ̶) minth = min ̶ ;

 cnt2=0;

 }

 }

Else

{ ++cnt3; cnt1=cnt2=0;

 If (cnt3 > 4) {

 minth = minth0 ;

 maxth = maxth0 ;

 cnt3=0;

 }

}

Fig. 6. Pseudocode of proposed RED-AT Algorithm

minth0 minth0

min
+

min̶ max
+

max̶

region a region b region c

D
ro

p

p
ro

b
a

b
il
it
y

qavg

range of

maxth

range of

minth

Fig. 5. Bounds on upper and lower thresholds.

 where, n=no. of nodes

k= burst size

a0 = current value of average queue size

q0= instantaneous value of queue

Work of [19] proposes an algorithm named Preferential Dy-

namic Threshold – RED (PDT-RED). In this method, packets

are classified into several types. Each type of packet has a pri-

ority set in header by sending host. The minimum and maxi-

mum thresholds are varied with unused buffer space and pri-

ority of a packet.

5 PROPOSED RED-AT ALGORITHM

As pointed out earlier that operation of RED is very sensitive
to its parameters such as maxp, minth, maxth, wq, etc. The fix val-
ue often degrades the performance of RED. There is no single
set of RED parameters that can work well under difference
congestion scenarios; therefore, adaptive strategies have been
devised for practical implementation of RED. Adaptive me-
chanism suggested by [4] is based on link utilization and
packet loss rather than average or instantaneous queue size to
change packet marking probability.

To achieve better performance in terms of drop rate and
link utilization, we adjust thresholds adaptively based on val-
ues of average queue size over a few past observations and
hence this proposed method is termed as Random Early De-
tection with Adaptive Threshold (RED-AT). In this method,
the thresholds are adjusted around their nominal values (minth0
and maxth0) within finite upper and lower limits. As shown in
Fig. 5 minth can be adjusted between two bound i.e. min+ and
min ̶ whereas max+ and max̶ are bounds around maxth. Initially
minimum and maximum threshold are set to nominal values.
During operation, thresholds are tuned depending on value of
average queue size observed over past few periods.

The drop probability plot is divided into three regions. In
region a, where average queue size is low, we gradually in-
crease minth by amount equal to fraction of dynamic range of
minth factor α and inrease maxth by fraction of dynamic range of

maxth. This makes sure that algorithm is gentle and less aggres-
sive under low traffic. In region c, where average queue size is
high, we gradually decrease minth by factor α and maxth by fac-
tor of β. This makes sure that the average queue size does not
become exceedingly large and hence delay. The value of β is
smaller than α because link underutilization can occur if con-
gestion management is too conservative or too aggressive but
packet loss occur only when congestion management is too
conservative. The pseudocode for adaptive threshold adjust-
ment is given in Fig. 6. The following terms and symbols are
used in the pseudocod.

 qavg→ average queue size

 minth0, maxth0 → initialized value of minth and maxth re-

spectively

 min+ , min ̶ → upper and lower bound on dynamic

range of minth

 max+ , max ̶ → upper and lower bound on dynamic

range of maxth
Our method not only uses current average value but also

few past average values of queue size to decide the region of

894

IJSER

International Journal of Scientific & Engineering Research Volume 5, Issue 11, November-2014
ISSN 2229-5518

IJSER © 2014

http://www.ijser.org

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60

Q
u

e
u

e
 L

e
n

g
th

 (
in

 p
a
c
k
e
ts

)

Time (seconds)

instantaneous

average

Fig. 8. Queue dynamics in convetinal RED.

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60

Q
u

eu
e

L
en

gt
h

 (
in

 p
ac

ke
ts

)

Time (seconds)

instantaneous

average

Fig. 9. Queue dynamics in RED-AT

R1 R2

S1

Sn

SINK

FTP

and

HTTP

Sources

S2

20 Mbps

5ms

45 Mbps

10ms

20 Mbps

10ms

Fig. 7. Network topology for simulation

operation and corresponding threshold adjustment action.
These new threshold values will be maintained at least for few
periods (till next region of operation is decided). This avoids
overly updates in thresholds upon every observation of aver-
age queue size and thus reduces oscillations in queue. The
swing in instantaneous and average queue size Therefore,
proposed RED-AT scheme exhibits lower variations in delay
and hence offer low jitter. Moreover, it renders lower packet
drop rate by keeping minth at higher value under low to me-
dium traffic load.

6 SIMULATION RESULTS AND DISCUSSIONS

The main objective of the simulation experiments is to ver-
ify that RED-AT keeps the oscillation in average queue size
within limits under varying traffic load conditions. Simula-
tions also verify that proposed scheme indeed improves the
throughput, drop rate and jitter performance. We conducted
simulations on ns-2 [20] network simulator to evaluate the
performance of RED-AT, conventional RED and adaptive RED.
The network topology of our set up is shown in Fig. 7 where
senders (S1 to Sn shown as circles) are connected to one end to
router R1 and sink node is connected to router R2. Hence, the
congested link under consideration is between R1-R2. Above
mentioned three AQM scheme will be implemented at router
R1 which has queue buffer size of 50 packets. Traffic is gener-
ated by TCP sources connected to node S1 to Sn. In our experi-
ments, mix traffic is generated with 70 FTP sources and 30 best
effort (HTTP) sources. Unless otherwise stated, we assume
that all packets generated by the senders are 1000 bytes long.

6.1 Experiment 1

In this experiment we investigate dynamic behaviour of con-
ventional RED and proposed RED-AT congestion control
scheme with moderately congested link. Fig. 8 and Fig. 9 show
instantaneous and average queue size variation with time con-
sidering number of TCP flows N=80, maxp=0.1 and wq=0.002 for
RED and RED-AT respectively. In both cases, lower threshold
minth=10 packets and upper threshold maxth=30 packets are
considered. From results, we noticed that the oscillations in
both instantaneous and average queue size are reduced when
RED-AT is used as compared to RED. Due to small variation
in average queue size, RED-AT limits delay variations. More-
over, RED-AT keeps average queue size remains slightly
higher than RED since RED-AT avoids excessive packet drops

by adjusting thresholds. This enhances utilization and
proves throughput.

6.2 Experiment 2

In this experiment, we evaluate the performance of RED,
ARED and RED-AT in terms of throughput, jitter and drop
rate by varying number of TCP flows from 5 to 100. Each point
on the result plot is obtained from 150s simulation run and
statistics are collected/recorded simultaneously in result file.
Once again, all three schemes use parameters wq =0.002, maxp
=0.1, minth =10 packets and maxth=30 packets.

The simulation results reveal the ability of proposed RED-
AT scheme to avoid excessive packet drop rate as compared to
other two schemes as seen from Fig. 10. This is because RED-
AT prevents early initiation of packet drop at low queue size
and keeps average queue size away from maxth. Comparing
RED and ARED, at low to medium congestion, packet drop
rate of RED closely follows ARED but in high traffic condi-
tions, ARED exhibits lower drop rate than RED. The through-
put performance shown in Fig. 11 illustrates success of RED-
AT in maintaining higher throughput. The throughput of RED
declines sharply under high traffic load whereas throughput
of ARED and RED-AT converges under high traffic load. As
illustrated in experiment 1, variation in instantaneous and av-
erage queue size in case of RED-AT is much smaller than RED

895

IJSER

International Journal of Scientific & Engineering Research Volume 5, Issue 11, November-2014
ISSN 2229-5518

IJSER © 2014

http://www.ijser.org

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90 100

Ji
tt

er
 (
m

s)

No. of TCP flows

proposed ARED RED

Fig. 12. Jitter vs. number of flows

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 10 20 30 40 50 60 70 80 90 100

D
ro

p
 r

at
e

(%
)

No. of TCP flows

proposed ARED RED

Fig. 10. Drop rate vs. number of flows

75

80

85

90

95

100

0 10 20 30 40 50 60 70 80 90 100

T
h

ro
u

gh
p

u
t/

B
W

 (
%

)

No. of TCP flows

proposed ARED RED

Fig. 11. Throughput vs. number of flows

and ARED. Hence RED-AT offers fewer variations in delay
which is reflected in the jitter plot shown in Fig. 12. Under low
to medium traffic load, RED-AT and ARED have roughly
same jitter but at higher traffic load RED-AT has lower jitter
than ARED. Due to large fluctuations in queue size, RED has
highest jitter.

7 CONCLUSION

In this paper, we explored the opportunity of improving basic
RED mechanism by adaptively adjusting the thresholds.
Unlike other schemes which work on current value of instan-
taneous or average queue size, the proposed RED-AT algo-
rithm uses current as well as few past values of average queue
length to correctly predict the queue behavior and adjust the
thresholds accordingly. It also restricts the dynamic range of
threshold within bounds. This has resulted in reduced swing
in the oscillations of actual and average queue size. RED-AT is
also able to keep high utilization of link by maintaining larger
average queue length, thus exhibiting high throughput com-
pared to RED and ARED. Due to more stablility in instantane-
ous and average queue, RED-AT offers lowest jitter. Besides it
keeps drop rate lower by keeping high value of low threshold
under low to medium traffic load.

REFERENCES

[1] V.Jacobson, “Congestion Avoidance and Control,” Proc. SIG-

COMM’88, vol.18, no.4, pp.314-329, Aug. 1988.

[2] S.Floyd and V.Jacobson, “Random Early Detection Gateways for

Congestion Avoidance,” IEEE/ACM Trans. on Networking, vol.1, no.4,

pp. 397-413, Aug. 1993.

[3] V.Firoiu and M.Borden, ”A Study of Active Queue Management for

Congestion Control,” Proc. of IEEE INFOCOM 2000, vol.3, pp.1435-

1444, Mar 2000.

[4] W.Feng, D.Kandlur, D.Saha and K.G.Shin, “Blue: An alternativeap-

proach to active queue management,” Proc. of the 11th International

Workshop on Network and Operating Systems Support for Digital Audio

and Video (NOSSDAV’01), Port Jefferson, NY, USA, pp. 41–50, June

2001.

[5] S.Floyd, R.Gummadi and S.Shenker, “Adaptive RED: An Algorithm

for Increasing the Robustness of RED’s Active Queue Management,”

Technical Report, ICSI, 2001.

[6] G.Xylomenos, G.Polyzos, P.Mahonen and M.Saaranen, “TCP Perfor-

mance issues over Wireless Links,” IEEE Communication, vol. 39, no.4,

pp.52-58, 2001.

[7] V.Jacobson, “Berkeley TCP evolution from 4.3-Tahoe to 4.3 Reno,”

Proc. 18th IETF, Vancouver, Canada, pp.365-376, Aug. 1990.

[8] S.Floyd, T.Henderson and A. Gurtov, “The New Reno Modification to

TCP's Fast Recovery Algorithm,” RFC 3782, April 2004.

[9] Nadim Parvez, “An Analytic Throughput Model for TCP NewReno,”

IEEE/ACM Transaction on Networking, vol.18, no.2, pp.448-461, 2010.

[10] L.S.Brakmo, S.W.O'Malley and L. L. Peterson, “TCP Vegas: New

Techniques for Congestion Detection and Avoidance,” SIGCOMM

Computer Comm. Rev., vol. 24, no. 4, pp.24-35, 1994.

[11] S.Mascolo, C.Casetti, M.Gerla, M.Sanadidi and R.Wang, “TCP West-

wood: Bandwidth Estimation for Enhanced Transport over Wireless

Links,” Proc. ACM MOBICOM, pp.287-297, July 2001.

[12] L.A.Grieco and S.Mascolo, “Performance Evaluation and Compari-

son of Westwood+, New Reno, and Vegas TCP Congestion Control,”

SIGCOMM Computer Communication Review, vol. 34, no. 2, pp.25-38,

2004.

[13] S.Gangadhar, T.A.N.Nguyen, G.Umapathi, and J.P.G.Sterbenz, “ TCP

Westwood(+) Protocol Implementation in ns-3,” Proc. ICST Conference

on Simulation Tools and Techniques, , ICST, Brussels, Belgium, pp.167–

175, 2013.

896

IJSER

International Journal of Scientific & Engineering Research Volume 5, Issue 11, November-2014
ISSN 2229-5518

IJSER © 2014

http://www.ijser.org

[14] M.Cheng and X.Ma, “Performance Evaluation of Queue Manage-

ment Methods for Congestion Control,” Journal of Information & Com-

putational Science, vol. 9, no. 6, pp.1599–1608, 2012.

[15] K.K.Ramakrishnan and S.Floyd, “The addition of explicit congestion

notification (ecn) to IP,” IETF RFC 3168, Jan. 2001.

[16] J.Wang, P.Dong, J.Chen, J.Huang, S.Zhang and W.Wang, “Adaptive

Explicit Congestion Control Based on Bandwidth Estimation for

High Bandwidth-delay Product Networks,” Elsevier Journal of Com-

puter Communications, vol. 36, no.10-11, pp.1235-1244, June 2013.

[17] M. Murshed, “Adaptive RED with Dynamic Threshold Adjustment,”

MS Research Report, Dept. of Electrical and Computer Engineering,

Iowa State Univ., Ames, Iowa, 2005.

[18] S.Floyd, “RED: Discussions of setting parameters,” available at

http://www.icir.org/floyd/REDparameters.txt. 1997.

[19] L.Sun and L.Wang, ”Novel RED Scheme with Preferential Dynamic

Threshold Deployment,” Proc. of IEEE International Conference on

Computational Intelligence and Security Workshop CISW 2007, pp.854-

857, Dec. 2007.

[20] TheNetwork Simulator-NS-2, http://www.isi.edu/nsnam/ns.

897

IJSER

